1. Adams, J. C. (2020). Creating a balanced data science program. In Proceedings of the 51st ACM technical symposium on computer science education, pp. 185–191. https://doi.org/10.1145/3328778.3366800
2. Albu, A. B., Malakuti, K., Tuokko, H., Lindstrom-Forneri, W., & Kowalski, K. (2008). Interdisciplinary project-based learning in ergonomics for software engineers: A case study. The Third International Conference on Software Engineering Advances, 2008, 295–300.
3. Anderson, P., Bowring, J., McCauley, R., Pothering, G., & Starr, C. (2014). An undergraduate degree in data science: Curriculum and a decade of implementation experience. In Proceedings of the 45th ACM technical symposium on computer science education—SIGCSE ’14, pp. 145–150. https://doi.org/10.1145/2538862.2538936
4. Anderson, R. E., Ernst, M. D., Ordóñez, R., Pham, P., & Tribelhorn, B. (2015). A data programming CS1 course. In Proceedings of the 46th ACM technical symposium on computer science education, pp. 150–155.
5. Asamoah, D., Doran, D., & Schiller, S. (2015). Teaching the foundations of data science: An interdisciplinary approach. ArXiv Preprint ArXiv: 1512.04456.