1. Anguita, D., Ghio, A., Oneto, L., Parra Perez, X., Reyes Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: Proceedings of the 21th International European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 437–442 (2013)
2. Antar, A.D., Ahmed, M., Ahad, M.A.R.: Challenges in sensor-based human activity recognition and a comparative analysis of benchmark datasets: a review. In: 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision and Pattern Recognition (icIVPR), pp. 134–139. IEEE (2019)
3. Bahad, P., Saxena, P.: Study of adaboost and gradient boosting algorithms for predictive analytics. In: Singh Tomar, G., Chaudhari, N.S., Barbosa, J.L.V., Aghwariya M.K. (eds.) International Conference on Intelligent Computing and Smart Communication 2019. Algorithms for Intelligent Systems. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0633-8_22
4. Faraci, F.D., et al.: Autoplay: a smart toys-kit for an objective analysis of children ludic behavior and development. In: 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2018)
5. Mehmood, A., Raza, A., Nadeem, A., Saeed, U.: Study of multi-classification of advanced daily life activities on shimmer sensor dataset. Int. J. Commun. Networks Inf. Secur. 8(2), 86 (2016)