Author:
Peng Jingyu,Liu Qi,Yue Linan,Zhang Zaixi,Zhang Kai,Sha Yunhao
Publisher
Springer Nature Switzerland
Reference51 articles.
1. Azzolin, S., Longa, A., Barbiero, P., Lio, P., Passerini, A.: Global explainability of GNNs via logic combination of learned concepts. In: The Eleventh International Conference on Learning Representations (2022)
2. Bian, T., et al.: Rumor detection on social media with bi-directional graph convolutional networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 549–556 (2020)
3. Chauhan, J., Nathani, D., Kaul, M.: Few-shot learning on graphs via super-classes based on graph spectral measures. In: International Conference on Learning Representations (2019)
4. Chen, L., Wu, L., Hong, R., Zhang, K., Wang, M.: Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 27–34 (2020)
5. Duval, A., Malliaros, F.D.: GraphSVX: Shapley value explanations for graph neural networks. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) Machine Learning and Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD 2021, Bilbao, Spain, 13–17 September 2021, Proceedings, Part II 21, pp. 302–318. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86520-7_19