1. Martinez-Cantin, R.: BayesOpt: a Bayesian optimization library for nonlinear optimization, experimental design and bandits. J. Mach. Learn. Res. 15(1), 3735–3739 (2014)
2. Greenhill, S., Rana, S., Gupta, S., Vellanki, P., Venkatesh, S.: Bayesian optimization for adaptive experimental design: a review. IEEE access 8, 13937–13948 (2020)
3. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory 58(5), 3250–3265 (2012)
4. Chowdhury, S.R., Gopalan, A.: On kernelized multi-armed bandits. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 844–853. PMLR, International Convention Centre, Sydney, Australia (Aug 2017)
5. Swersky, K.: Improving Bayesian optimization for machine learning using expert priors. University of Toronto (Canada) (2017)