Afterword: Novel Knowledge, or Cleansing Dirty Data: Toward Open-Source Histories of the Novel

Author:

Friedman Emily C.

Abstract

AbstractThis afterword discusses the most important, most under-rewarded, and most unsexy aspect of data visualization: the production and use of reliable underlying data. Starting from the premise that visualizations are only as good as their underlying evidentiary base, Freidman addresses the contributions of digital projects that have laid the foundation for such practices, including massive multi-institution projects like Orlando, mid-sized projects like The Early Novels Database (END), and the author’s own small-scale project, Manuscript Fiction in the Age of Print (MFAP). Following this assessment, the author proposes a set of guidelines for best practices in creating new data so that amendable, transformable visualizations can be produced, built on collective knowledge.

Publisher

Springer International Publishing

Reference17 articles.

1. Algee-Hewitt, Mark, Sarah Allison, Marissa Gemma, Ryan Heuser, Franco Moretti, and Hannah Walser. 2016. Canon/Archive. Large-Scale Dynamics in the Literary Field. Literary Lab Pamphlet 11 (January): 1–13. https://litlab.stanford.edu/LiteraryLabPamphlet11.pdf

2. Bode, Katherine. 2018. A World of Fiction: Digital Collections and the Future of Literary History. Ann Arbor: University of Michigan Press.

3. Burkert, Mattie. 2017. Recovering the London Stage Information Bank: Lessons from an Early Humanities Computing Project. Digital Humanities Quarterly 11 (3): n.p. http://www.digitalhumanities.org/dhq/vol/11/3/000321/000321.html

4. Campbell, E.G., B.R. Clarridge, M. Gokhale, L. Birenbaum, S. Hilgarten, N.A. Holtzman, and D. Blumenthal. 2001. Data Withholding in Academic Genetics: Evidence from a National Survey. Journal of American Medical Association 287 (4): 473–480. https://doi.org/10.1001/jama.287.4.473.

5. Da, Nan Z. 2019a. The Computational Case against Computational Literary Studies. Critical Inquiry 45 (3): 601–639. https://doi.org/10.1086/702594.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3