1. Baltrušaitis, T., Robinson, P., Morency, L.P.: Openface: an open source facial behavior analysis toolkit. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–10. IEEE (2016)
2. Cetinic, E., Lipic, T., Grgic, S.: A deep learning perspective on beauty, sentiment, and remembrance of art. IEEE Access 7, 73694–73710 (2019)
3. Ci, Y., Ma, X., Wang, Z., Li, H., Luo, Z.: User-guided deep anime line art colorization with conditional adversarial networks. In: 2018 ACM Multimedia Conference on Multimedia Conference, MM 2018, Seoul, Republic of Korea, October 22–26, 2018, pp. 1536–1544 (2018).
https://doi.org/10.1145/3240508.3240661
4. Elgammal, A., Liu, B., Elhoseiny, M., Mazzone, M.: Can: creative adversarial networks, generating “art” by learning about styles and deviating from style norms. arXiv preprint (2017).
arXiv:1706.07068
5. Elgammal, A., Liu, B., Kim, D., Elhoseiny, M., Mazzone, M.: The shape of art history in the eyes of the machine. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)