Publisher
Springer Nature Switzerland
Reference34 articles.
1. Samuel, A.L.: Machine learning. Technol. Rev. 1(62), 42–45 (1959)
2. Tank, A., Covert, I., Foti, N., Shojaie, A., Fox, E.B.: Neural granger causality. IEEE Trans. Pattern Anal. Mach. Intell. 44(8), 4267–4279 (2021)
3. Jouilil, Y., et al.: Comparing the accuracy of classical and machine learning methods in time series forecasting: a case study of USA inflation. Statistics, Optim. Information Comput. 11(4), 1041–1050 (2023)
4. Oukhouya, H., Kadiri, H., El Himdi, K.,Guerbaz, R: Forecasting international stock market trends: XGBoost, LSTM, LSTM-XGBoost, and Backtesting XGBoost models. Stat. Optim. Inf. Comput. 12(1), 200–209 (2024)
5. Yun, K.K., Yoon, S.W., Won, D.: Prediction of stock price direction using a hybrid GA-XGBoost algorithm with a three-stage feature engineering process. Expert Syst. Appl. 186, 115716 (2021)