1. Abowd, J., Ashmead, R., Cumings-Menon, R., Garfinkel, S., Heineck, M., Heiss, C., Johns, R., Kifer, D., Leclerc, P., Machanavajjhala, A., Moran, B., Sexton, W., Spence, M., Zhuravlev, P.: The 2020 census disclosure avoidance system topdown algorithm. Harvard Data Science Review (Special Issue 2) (2022). https://doi.org/10.1162/99608f92.529e3cb9
2. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-indistinguishability. In: Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security - CCS ’13, pp. 901–914. ACM Press, New York (2013). https://doi.org/10.1145/2508859.2516735
3. Ashena, N., Dell’Aglio, D., Bernstein, A.: Understanding $$\epsilon $$ for Differential Privacy in Differencing Attack Scenarios. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol. 398 LNICST, pp. 187–206 (2021). https://doi.org/10.1007/978-3-030-90019-9_10. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120047890&doi=10.1007%2f978-3-030-90019-9_10&partnerID=40&md5=84a2d1bcf4d0ebb03b07da6b3dd4f8d5
4. Biggio, B., Roli, F.: Wild patterns. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 2154–2156. ACM, New York (2018). https://doi.org/10.1145/3243734.3264418
5. Brauneck, A., Schmalhorst, L., Kazemi Majdabadi, M.M., Bakhtiari, M., Völker, U., Baumbach, J., Baumbach, L., Buchholtz, G.: Federated machine learning, privacy-enhancing technologies, and data protection laws in medical research: scoping review. J. Med. Int. Res. 25, e41588 (2023). https://doi.org/10.2196/41588