1. Abrami, P. C., Bernard, R. M., Borokhovski, E., Waddington, D. I., Wade, C. A., & Persson, T. (2015). Strategies for teaching students to think critically: A meta-analysis. Review of Educational Research, 85(2), 275–314.
https://doi.org/10.3102/0034654314551063
.
2. Arzarello, F., & Sabena, C. (2011). Semiotic and theoretic control in argumentation and proof activities. Educational Studies in Mathematics, 77(2), 189–206.
3. Arzarello, F., Micheletti, C., Olivero, F., Robutti, O., & Paola, D. (1998). A model for analysing the transition to formal proofs in geometry. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 24–31). Bellville, ZA: Kwik Kopy Printing.
4. Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. ZDM—The International Journal on Mathematics Education, 34(3), 66–72.
5. Arzarello, F., Bartolini Bussi, M. G.M., Leung, A., Mariotti, M.A., & Stevenson, I. (2012). Experimental approaches to theoretical thinking: Artefacts and proofs. In G. Hanna & G. de Villiers (Eds.), Proof and proving in mathematics education (Vol. 15, pp. 97–146). New ICMI studies series. New York: Springer.