Author:
Yang Shengpeng,Zhou Siwei,Yang Shasha,Shi Jiandong
Publisher
Springer Nature Switzerland
Reference32 articles.
1. Bai, J., et al.: A3T-GCN: attention temporal graph convolutional network for traffic forecasting. ISPRS Int. J. Geo Inf. 10(7), 485 (2021)
2. Bai, L., Yao, L., Li, C., Wang, X., Wang, C.: Adaptive graph convolutional recurrent network for traffic forecasting. Adv. Neural. Inf. Process. Syst. 33, 17804–17815 (2020)
3. Cai, L., et al.: Structural temporal graph neural networks for anomaly detection in dynamic graphs. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Changsha, pp. 3747–3756. ACM (2021)
4. Chen, J., Wang, X., Xu, X.: GC-LSTM: graph convolution embedded LSTM for dynamic network link prediction. Appl. Intell., 1–16 (2022)
5. Grattarola, D., Alippi, C.: Graph neural networks in TensorFlow and keras with spektral. IEEE Comput. Intell. Mag. 16(1), 99–106 (2021)