A Hierarchical Graph-Based Neural Network for Malware Classification

Author:

Wang ShuaiORCID,Zhao YuranORCID,Liu GongshenORCID,Su BoORCID

Publisher

Springer International Publishing

Reference19 articles.

1. Abusitta, A., Li, M.Q., Fung, B.C.: Malware classification and composition analysis: a survey of recent developments. J. Inf. Secur. Appl. 59, 102828 (2021)

2. Dai, H., Dai, B., Song, L.: Discriminative embeddings of latent variable models for structured data. In: International Conference on Machine Learning, pp. 2702–2711. PMLR (2016)

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

4. Ding, S.H., Fung, B.C., Charland, P.: Asm2vec: boosting static representation robustness for binary clone search against code obfuscation and compiler optimization. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 472–489. IEEE (2019)

5. Gibert, D., Mateu, C., Planes, J.: A hierarchical convolutional neural network for malware classification. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multimodal Windows malware detection method based on hybrid analysis and graph representations;2024 International Conference on Multimedia Analysis and Pattern Recognition (MAPR);2024-08-15

2. A Survey on Malware Detection with Graph Representation Learning;ACM Computing Surveys;2024-06-29

3. XShellGNN: Cross-file Web Shell Detection Based on Graph Neural Network;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

4. MalGNE: Enhancing the Performance and Efficiency of CFG-Based Malware Detector by Graph Node Embedding in Low Dimension Space;IEEE Transactions on Information Forensics and Security;2024

5. Malware Detected and Tell Me Why: An Verifiable Malware Detection Model with Graph Metric Learning;Science of Cyber Security;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3