1. Abarbanel, S., & Gottlieb, D. (1981). Optimal time splitting for two-and three-dimensional Navier-Stokes equations with mixed derivatives. Journal of Computational Physics, 41(1), 1–33.
2. Altmann, C., Beck, A. D., Hindenlang, F., Staudenmaier, M., Gassner, G. J., & Munz, C.-D. (2013). An efficient high performance parallelization of a discontinuous Galerkin spectral element method. In Keller, R., Kramer, D., & Weiss, J-P. (eds.), Facing the Multicore-Challenge III, Lecture Notes in Computer Science, (pp. 37–47, vo. 7686). Berlin: Springer. ISBN 978-3-642-35892-0.
3. Baggag, A., Atkins, H., & Keyes, D. (2000). Parallel implementation of the discontinuous Galerkin method. In Parallel computational fluid dynamics: Towards teraflops, optimization, and novel formulations, (pp. 115–122).
4. Barth, T. J. (1999). Numerical methods for gasdynamic systems on unstructured meshes. In Dietmar Kröner, Mario Ohlberger, & Christian Rohde (Eds.), An Introduction to Recent Developments in Theory and Numerics for Conservation Laws (Vol. 5, pp. 195–285)., Lecture Notes in Computational Science and Engineering Berlin Heidelberg: Springer.
5. Bassi, F., & Rebay, S. (1997). A high order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. Journal of Computational Physics, 131, 267–279.