1. Saimurugan, M., Ramachandran, K.I., Sugumaran, V., et al.: Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine. Expert Syst. Appl. 38(4), 3819–3826 (2011)
2. Kim, Y.M.: Data–driven modeling, control, and fault detection of wind turbine systems. Int. J. Syst. Control Inf. Process. 1(3), 298–318 (2014)
3. Bittencourt, A.C., Saarinen, K., Sander-Tavallaey, S., et al.: A data-driven approach to diagnostics of repetitive processes in the distribution domain – applications to gearbox diagnostics in industrial robots and rotating machines. Mechatronics 24(8), 1032–1041 (2014)
4. Donat, W., Choi, K., An, W., et al.: Data visualization, data reduction and classifier fusion for intelligent fault diagnosis in gas turbine engines. Trans. ASME J. Eng. Gas Turb. Power 130(4), 041602, 1–8 (2008)
5. Di Maio, F., Zio, E.: Failure prognostics by a data-driven similarity-based approach. Int. J. Reliab. Qual. Saf. Eng. 20(1), 1350001, 1–17 (2013)