Publisher
Springer Nature Switzerland
Reference62 articles.
1. Abdar, M., et al.: A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021)
2. Abe, T., Buchanan, E.K., Pleiss, G., Zemel, R., Cunningham, J.P.: Deep ensembles work, but are they necessary? Adv. Neural. Inf. Process. Syst. 35, 33646–33660 (2022)
3. Altman, D.G., Bland, J.M.: Measurement in medicine: the analysis of method comparison studies. J. R. Stat. Soc. Ser. D: Stat. 32(3), 307–317 (1983)
4. Balakrishnan, R., del C. Valdes Hernández, M., Farrall, A.J.: Automatic segmentation of white matter hyperintensities from brain magnetic resonance images in the era of deep learning and big data–a systematic review. Comput. Med. Imaging Graph. 88, 101867 (2021)
5. Begoli, E., Bhattacharya, T., Kusnezov, D.: The need for uncertainty quantification in machine-assisted medical decision making. Nat. Mach. Intell. 1(1), 20–23 (2019)