Author:
Zhao Fukai,Zhen Dong,Yu Xiaopeng,Liu Xiaoang,Hu Wei,Ding Jin
Publisher
Springer Nature Switzerland
Reference10 articles.
1. Lei, Y., Han, D., Lin, J., et al.: Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mech. Syst. Signal Process. 38(1), 113–124 (2013)
2. Zhang, B., Khawaja, T., Patrick, R., et al.: A novel blind deconvolution de-noising scheme in failure prognosis. Trans. Inst. Meas. Control. 32(1), 37–63 (2010)
3. Liang, P., Deng, C., Wu, J., et al.: a semi-supervised fault diagnosis framework for a gearbox based on generative adversarial nets. In: 2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS). IEEE (2018)
4. Wang, H., Liu, Z., Peng, D., et al.: Feature-level attention-guided multitask CNN for fault diagnosis and working conditions identification of rolling bearing. IEEE Trans. Neural Netw. Learn. Syst. 33(9), 4757–4769 (2021)
5. Yu, J.: A selective deep stacked denoising autoencoders ensemble with negative correlation learning for gearbox fault diagnosis. Comput. Ind. 108, 62–72 (2019)