Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage

Author:

Jonáš MartinORCID,Strejček JanORCID,Trtík MarekORCID,Urban LukášORCID

Abstract

AbstractWe present a gray-box fuzzing approach based on several new ideas. While standard gray-box fuzzing aims to cover all branches of the input program, our approach primarily aims to cover both results of each Boolean expression. To achieve this goal, we track the distances to flipping these results and we dynamically detect the input bytes that influence the distance. Then we use this information to efficiently flip the results. More precisely, we apply gradient descent on the detected bytes or we create new inputs by using detected bytes from different inputs.We implemented our approach in a tool called Fizzer. An evaluation on the benchmarks of Test-Comp 2023 shows that Fizzer is fully competitive with the winning tools of the competition, which use advanced formal methods like symbolic execution or bounded model checking, usually in combination with fuzzing.

Publisher

Springer Nature Switzerland

Reference27 articles.

1. Aldughaim, M., Alshmrany, K.M., Gadelha, M.R., de Freitas, R., Cordeiro, L.C.: FuSeBMC_IA: Interval analysis and methods for test case generation (competition contribution). In: Lambers, L., Uchitel, S. (eds.) Fundamental Approaches to Software Engineering - 26th International Conference, FASE 2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings. Lecture Notes in Computer Science, vol. 13991, pp. 324–329. Springer (2023). https://doi.org/10.1007/978-3-031-30826-0_18, https://doi.org/10.1007/978-3-031-30826-0_18

2. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.: FuSeBMC: An energy-efficient test generator for finding security vulnerabilities in C programs. In: Loulergue, F., Wotawa, F. (eds.) Tests and Proofs - 15th International Conference, TAP 2021, Held as Part of STAF 2021, Virtual Event, June 21-22, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12740, pp. 85–105. Springer (2021). https://doi.org/10.1007/978-3-030-79379-1_6, https://doi.org/10.1007/978-3-030-79379-1_6

3. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.: FuSeBMC v4: Smart seed generation for hybrid fuzzing. In: Johnsen, E.B., Wimmer, M. (eds.) Fundamental Approaches to Software Engineering. pp. 336–340. Springer International Publishing, Cham (2022)

4. Bekrar, S., Bekrar, C., Groz, R., Mounier, L.: A taint based approach for smart fuzzing. In: Proceedings of the 2012 IEEE Fifth International Conference on Software Testing, Verification and Validation. p. 818-825. ICST ’12, IEEE Computer Society, USA (2012). https://doi.org/10.1109/ICST.2012.182, https://doi.org/10.1109/ICST.2012.182

5. Beyer, D.: Software testing: 5th comparative evaluation: Test-Comp 2023. In: Lambers, L., Uchitel, S. (eds.) Fundamental Approaches to Software Engineering - 26th International Conference, FASE 2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings. Lecture Notes in Computer Science, vol. 13991, pp. 309–323. Springer (2023). https://doi.org/10.1007/978-3-031-30826-0_17, https://doi.org/10.1007/978-3-031-30826-0_17

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Refining CEGAR-Based Test-Case Generation with Feasibility Annotations;Lecture Notes in Computer Science;2024-09-10

2. Fizzer: New Gray-Box Fuzzer;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3