Abstract
AbstractWe present a gray-box fuzzing approach based on several new ideas. While standard gray-box fuzzing aims to cover all branches of the input program, our approach primarily aims to cover both results of each Boolean expression. To achieve this goal, we track the distances to flipping these results and we dynamically detect the input bytes that influence the distance. Then we use this information to efficiently flip the results. More precisely, we apply gradient descent on the detected bytes or we create new inputs by using detected bytes from different inputs.We implemented our approach in a tool called Fizzer. An evaluation on the benchmarks of Test-Comp 2023 shows that Fizzer is fully competitive with the winning tools of the competition, which use advanced formal methods like symbolic execution or bounded model checking, usually in combination with fuzzing.
Publisher
Springer Nature Switzerland
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献