Auction-Based Scheduling

Author:

Avni GuyORCID,Mallik KaushikORCID,Sadhukhan SumanORCID

Abstract

AbstractSequential decision-making tasks often require satisfaction of multiple, partially-contradictory objectives. Existing approaches are monolithic, where a single policy fulfills all objectives. We present auction-based scheduling, a decentralized framework for multi-objective sequential decision making. Each objective is fulfilled using a separate and independent policy. Composition of policies is performed at runtime, where at each step, the policies simultaneously bid from pre-allocated budgets for the privilege of choosing the next action. The framework allows policies to be independently created, modified, and replaced. We study path planning problems on finite graphs with two temporal objectives and present algorithms to synthesize policies together with bidding policies in a decentralized manner. We consider three categories of decentralized synthesis problems, parameterized by the assumptions that the policies make on each other. We identify a class of assumptions called assume-admissible for which synthesis is always possible for graphs whose every vertex has at most two outgoing edges.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3