1. Aïvodji, U., Ferry, J., Gambs, S., Huguet, M.J., Siala, M.: Learning fair rule lists (2019). arXiv preprint http://arxiv.org/abs/1909.03977
2. Aïvodji, U., Ferry, J., Gambs, S., Huguet, M.J., Siala, M.: Faircorels, an open-source library for learning fair rule lists. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 4665–4669. CIKM 2021, Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3459637.3481965
3. Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., Rudin, C.: Learning certifiably optimal rule lists. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 35–44. KDD 2017, Association for Computing Machinery (2017). https://doi.org/10.1145/3097983.3098047
4. Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., Rudin, C.: Learning certifiably optimal rule lists for categorical data. J. Mach. Learn. Res. 18(234), 1–78 (2018). http://jmlr.org/papers/v18/17-716.html
5. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias: there’s software used across the country to predict future criminals and it’s biased against blacks. propublica (2016). ProPublica, 23 May 2016