ABODE-Net: An Attention-based Deep Learning Model for Non-intrusive Building Occupancy Detection Using Smart Meter Data
Author:
Publisher
Springer Nature Switzerland
Link
https://link.springer.com/content/pdf/10.1007/978-3-031-28124-2_15
Reference26 articles.
1. Akbar, A., Nati, M., Carrez, F., Moessner, K.: Contextual occupancy detection for smart office by pattern recognition of electricity consumption data. In: 2015 IEEE International Conference on Communications (ICC), pp. 561–566 (2015)
2. Albert, A., Rajagopal, R.: Smart meter driven segmentation: what your consumption says about you. IEEE Trans. Power Syst. 28(4), 4019–4030 (2013)
3. Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T., Santini, S.: The ECO data set and the performance of non-intrusive load monitoring algorithms. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-efficient Buildings (BuildSys 2014), pp. 80–89 (2014)
4. Chen, D., Barker, S., Subbaswamy, A., Irwin, D., Shenoy, P.: Non-intrusive occupancy monitoring using smart meters. In: Proceedings of the 5th ACM Workshop on Embedded Systems for Energy-Efficient Buildings (BuildSys 2013), pp. 1–8 (2013)
5. Chen, W., Shi, K.: Multi-scale attention convolutional neural network for time series classification. Neural Netw. 136, 126–140 (2021)
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. BTPA: Hardware-Software Co-Design for Bitwise Based Transformer with Parallelized Accelerator;2024 10th IEEE International Conference on High Performance and Smart Computing (HPSC);2024-05-10
2. Design and Implementation of an Automated Disaster-Recovery System for a Kubernetes Cluster Using LSTM;Applied Sciences;2024-05-03
3. Low Complexity Energy Disaggregation Algorithm for Non-intrusive Load Monitoring;Electric Power Components and Systems;2024-03-22
4. Automatic Searching of Lightweight and High-Performing CNN Architectures for EEG-Based Driving Fatigue Detection;IEEE Transactions on Instrumentation and Measurement;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3