Author:
Xue Yuyang,Du Yuning,Carloni Gianluca,Pachetti Eva,Jordan Connor,Tsaftaris Sotirios A.
Publisher
Springer Nature Switzerland
Reference25 articles.
1. Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2019). https://doi.org/10.1109/TMI.2018.2865356
2. Antun, V., Renna, F., Poon, C., Adcock, B., Hansen, A.C.: On instabilities of deep learning in image reconstruction and the potential costs of AI. Proc. Natl. Acad. Sci. 117(48), 30088–30095 (2020)
3. Bilecen, B.B., Ayazoglu, M.: Bicubic++: slim, slimmer, slimmest - designing an industry-grade super-resolution network (2023). https://arxiv.org/abs/2305.02126
4. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018). https://doi.org/10.1002/mrm.26977
5. Han, X., Liu, Y., Lin, Y., Chen, K., Zhang, W., Liu, Q.: MDAMF: reconstruction of cardiac cine MRI under free-breathing using motion-guided deformable alignment and multi-resolution fusion (2023). https://arxiv.org/abs/2303.04968