1. Anonymous, community, D., Branwen, G.: Danbooru 2020: A large-scale crowdsourced and tagged anime illustration dataset, January 2021. https://www.gwern.net/Danbooru2020
2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 214–223. PMLR, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. https://proceedings.mlr.press/v70/arjovsky17a.html
3. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48. ICML 2009, Association for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1553374.1553380
4. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807 (2017). https://doi.org/10.1109/CVPR.2017.195
5. Ci, Y., Ma, X., Wang, Z., Li, H., Luo, Z.: User-guided deep anime line art colorization with conditional adversarial networks. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 1536–1544. MM 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3240508.3240661