Publisher
Springer Nature Switzerland
Reference31 articles.
1. Tummala, R.K., Bhuvaneswari, E., John, T.J., Karthi, S., Arjun, K.: Depression detection using data mining algorithms from social media context. Mater. Today: Proc. (2021)
2. Paul, S., Jandhyala, S.K., Basu, T.: Early detection of signs of anorexia and depression over social media using effective machine learning frameworks. In: CLEF Working notes, CLEF (2018)
3. Vioules, M.J., Moulahi, B.: Detection of suicide-related posts in Twitter data streams. IBM J. Res. Dev. 62, 7–1 (2018)
4. Verma, B., Gupta, S., Goel, L.: A survey on sentiment analysis for depression detection. In: Advances in Automation, Signal Processing, Instrumentation, and Control, pp. 13–24. Springer (2021)
5. Cacheda F., Fernandez, D., Novoa, F.J., Carneiro, V.: Early detection of depression: social network analysis and random forest techniques. J. Med. Int. Res. 21, e12554 (2019)