Author:
Morilhat Germain,Kifle Naomi,FinesilverSmith Sandra,Ruijsink Bram,Vergani Vittoria,Desita Habtamu Tegegne,Desita Zerubabel Tegegne,Puyol-Antón Esther,Carass Aaron,King Andrew P.
Publisher
Springer Nature Switzerland
Reference15 articles.
1. El Jurdi, R., Dargent, T., Petitjean, C., Honeine, P., Abdallah, F.: Investigating CoordConv for fully and weakly supervised medical image segmentation. In: Proceedings of the IPTA, pp. 1–5 (2020)
2. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021)
3. Kuo, C.C., et al.: Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning. NPJ Digit. Med. 2(29) (2019)
4. Lichtenstein, D.A., Mezière, G.A.: The BLUE-points: three standardized points used in the BLUE-protocol for ultrasound assessment of the lung in acute respiratory failure. Crit. Ultrasound J. 3, 109–110 (2011)
5. Liu, R., et al.: An intriguing failing of convolutional neural networks and the CoordConv solution. In: Proceedings of the NeurIPS, pp. 9605–9616 (2018)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献