1. Baarle, L.V.: Loish blog: no to AI generated images (2022). https://blog.loish.net/post/703723938473181184/theres-a-protest-going-on-against-ai-art-over-on
2. Baio, A.: AI data laundering: how academic and nonprofit researchers shield tech companies from accountability (2022). https://waxy.org/2022/09/ai-data-laundering-how-academic-and-nonprofit-researchers-shield-tech-companies-from-accountability/
3. Bansal, H., Yin, D., Monajatipoor, M., Chang, K.W.: How well can text-to-image generative models understand ethical natural language interventions? In: Goldberg, Y., Kozareva, Z., Zhang, Y. (eds.) Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 1358–1370. Association for Computational Linguistics, Abu Dhabi, United Arab Emirates (2022). https://doi.org/10.18653/v1/2022.emnlp-main.88, https://aclanthology.org/2022.emnlp-main.88
4. Beck, C.: Adobe releases new firefly generative AI models and web app; integrates firefly into creative cloud and adobe express (2023). https://news.adobe.com/news/news-details/2023/Adobe-Releases-New-Firefly-Generative-AI-Models-and-Web-App-Integrates-Firefly-Into-Creative-Cloud-and-Adobe-Express/default.aspx
5. Bianchi, F., et al.: Easily accessible text-to-image generation amplifies demographic stereotypes at large scale. In: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, pp. 1493–1504. FAccT 2023, Association for Computing Machinery (2023). https://doi.org/10.1145/3593013.3594095