Scenario-Based Foresight in the Age of Digital Technologies and AI

Author:

Ködding Patrick,Koldewey Christian,Dumitrescu Roman

Abstract

AbstractScenario-based foresight is used less and less in the corporate world despite continued high satisfaction with the obtained results. In the age of digitalization, many companies feel increasingly forced to short-termism instead of strategic planning. However, emerging digital technologies, such as artificial intelligence (AI), represent a promising approach to cope with the traditional challenges of scenario-based foresight as well as new challenges added by digitalization. Therefore, this work-in-progress paper identifies and analyzes use cases for scenario-based foresight with digital technologies employing a systematic analysis of the relevant literature.In the paper at hand, we show that the use of digital technologies for improving the performance of scenario-based foresight is an emerging field. We identify 14 so-called use cases, i.e., unique goal-oriented applications of digital technologies for scenario-based foresight. In general, the use cases show that currently digital technologies can enhance, not substitute the capabilities of scenario-based foresight practitioners. Digital technologies primarily support the analysis of large amounts of data, e.g., for collecting futuristic data and identifying key influence factors. However, activities that require implicit knowledge and creativity, like the interpretation of scenarios, are currently still left to humans.

Publisher

Springer International Publishing

Reference51 articles.

1. 4strat (Eds.): Foresight strategy cockpit (2022). https://www.4strat.com/strategy-foresight-service/foresight-strategy-cockpit/. Accessed 16 June 2022

2. Acatech (Ed.): Künstliche Intelligenz in der Industrie [Artificial Intelligence in Industy]. Munich. acatech HORIZONTE (2020)

3. Akkus, Z., et al.: Artificial intelligence (AI)-empowered echocardiography interpretation: a state-of-the-art review. J. Clin. Med. 10(7), 1391 (2021). https://doi.org/10.3390/jcm10071391

4. Backhaus, K., König, U., Mohr, S., Paulsen, T.: Szenarioanalyse – Verbesserungen aus der Münsteraner Effizienz-Werkstatt [Scenario Analysis – Improvements from the Muenster Efficiency Laboratory]. In: Jürgen, G., Wilhelm, B., Roman, D. (eds.). Vorausschau und Technologieplanung. 14. Symposium für Vorausschau und Technologieplanung, Berlin, 8–9 November 2018. Paderborn, Universität Paderborn Heinz Nixdorf Institut, pp. 261–287 (2018)

5. Bain & Company (Eds.): Management Tools. Scenario and Contingency Planning (2018). https://www.bain.com/insights/management-tools-scenario-and-contingency-planning/. Accessed 18 July 2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3