1. Neal, R.M.: Bayesian Learning for Neural Networks (Doctoral dissertation, University of Toronto) (1995)
2. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)
3. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
4. Baldi, P., Sadowski, P.J.: Understanding dropout. In: Advances in Neural Information Processing Systems, vol. 26 (2013)
5. Damianou, A., Lawrence, N.D.: Deep gaussian processes. In: Artificial Intelligence and Statistics, pp. 207–215. PMLR (2013)