Quantification of Uncertainties in Neural Networks

Author:

Wu Xinyang,Wagner Philipp,Huber Marco F.

Abstract

AbstractArtificial neural networks only compute point estimates and thus, do not provide the user with a proper decision space. In high-risk use cases, the confidence of the neural network is an important support for decision-making. Bayesian neural networks extend classical deep neural networks with a probability component and allow the user to assess the probability distribution over the prediction. Due to the large number of parameters to be learned, the calculation of the predictive probability can only be performed approximately in practice. In recent years, many methods have been developed to efficiently learn the parameter distributions for Bayesian neural networks. Each of these has different advantages and disadvantages, and thus can be used for different applications. Quantifying uncertainty in the context of neural networks allows the user to interpret the results more comprehensively as well as to assess the risk and therefore makes an important contribution to the user’s digital sovereignty.

Publisher

Springer International Publishing

Reference29 articles.

1. Neal, R.M.: Bayesian Learning for Neural Networks (Doctoral dissertation, University of Toronto) (1995)

2. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

3. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

4. Baldi, P., Sadowski, P.J.: Understanding dropout. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

5. Damianou, A., Lawrence, N.D.: Deep gaussian processes. In: Artificial Intelligence and Statistics, pp. 207–215. PMLR (2013)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3