1. Ammad-ud-din, M., et al.: Federated collaborative filtering for privacy-preserving personalized recommendation system. CoRR abs/1901.09888 (2019).
http://arxiv.org/abs/1901.09888
2. Berta, Á., Bilicki, V., Jelasity, M.: Defining and understanding smartphone churn over the internet: a measurement study. In: Proceedings of the 14th IEEE International Conference on Peer-to-Peer Computing (P2P 2014). IEEE (2014).
https://doi.org/10.1109/P2P.2014.6934317
3. Bonawitz, K., et al.: Practical secure aggregation for federated learning on user-held data. In: NIPS Workshop on Private Multi-Party Machine Learning (2016)
4. Chen, F., Dong, Z., Li, Z., He, X.: Federated meta-learning for recommendation. CoRR abs/1802.07876 (2018).
http://arxiv.org/abs/1802.07876
5. Danner, G., Berta, Á., Hegedűs, I., Jelasity, M.: Robust fully distributed mini-batch gradient descent with privacy preservation. Secur. Commun. Netw. 2018, 6728020 (2018).
https://doi.org/10.1155/2018/6728020