Decentralized Recommendation Based on Matrix Factorization: A Comparison of Gossip and Federated Learning

Author:

Hegedűs IstvánORCID,Danner GáborORCID,Jelasity MárkORCID

Publisher

Springer International Publishing

Reference17 articles.

1. Ammad-ud-din, M., et al.: Federated collaborative filtering for privacy-preserving personalized recommendation system. CoRR abs/1901.09888 (2019). http://arxiv.org/abs/1901.09888

2. Berta, Á., Bilicki, V., Jelasity, M.: Defining and understanding smartphone churn over the internet: a measurement study. In: Proceedings of the 14th IEEE International Conference on Peer-to-Peer Computing (P2P 2014). IEEE (2014). https://doi.org/10.1109/P2P.2014.6934317

3. Bonawitz, K., et al.: Practical secure aggregation for federated learning on user-held data. In: NIPS Workshop on Private Multi-Party Machine Learning (2016)

4. Chen, F., Dong, Z., Li, Z., He, X.: Federated meta-learning for recommendation. CoRR abs/1802.07876 (2018). http://arxiv.org/abs/1802.07876

5. Danner, G., Berta, Á., Hegedűs, I., Jelasity, M.: Robust fully distributed mini-batch gradient descent with privacy preservation. Secur. Commun. Netw. 2018, 6728020 (2018). https://doi.org/10.1155/2018/6728020

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Federated learning for digital healthcare: concepts, applications, frameworks, and challenges;Computing;2024-07-10

2. A Hybrid Decentralised Learning Topology for Recommendations with Improved Privacy;Proceedings of the 4th Workshop on Machine Learning and Systems;2024-04-22

3. ALS Algorithm for Robust and Communication-Efficient Federated Learning;Proceedings of the 4th Workshop on Machine Learning and Systems;2024-04-22

4. Deep learning-based privacy-preserving recommendations in federated learning;International Journal of General Systems;2024-02-13

5. FedStar: Efficient Federated Learning On Heterogeneous Communication Networks;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3