Publisher
Springer Nature Switzerland
Reference30 articles.
1. Albrecht, S.V., Christianos, F., Schäfer, L.: Multi-Agent Reinforcement Learning: Foundations and Modern Approaches. MIT Press, Cambridge (2023)
2. Ardon, L., Vadori, N., Spooner, T., Xu, M., Vann, J., Ganesh, S.: Towards a fully RL-based market simulator. In: Proceedings of the ACM International Conference on AI in Finance (ICAIF), pp. 7:1–7:9 (2021)
3. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 38(2), 156–172 (2008)
4. Camacho, A., Toro Icarte, R., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: LTL and beyond: formal languages for reward function specification in reinforcement learning. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 6065–6073 (2019)
5. Camacho, A., Varley, J., Zeng, A., Jain, D., Iscen, A., Kalashnikov, D.: Reward machines for vision-based robotic manipulation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 14284–14290 (2021)