1. Huang, Z., Du, X., Chen, L., Li, Y., Liu, M., Chou, Y., Jin, L.: Convolutional neural network based on complex networks for brain tumor image classification with a modified activation function. IEEE Access. 8, 89281–89290 (2020)
2. Luo, Y., Yu, S.: Accelerating deep neural network in-situ training with non-volatile and volatile memory based hybrid precision synapses. IEEE Trans. Comput. 69(8), 1113–1127 (2020)
3. Si, X., Chen, J.J., Tu, Y.N., Huang, W.H., Wang, J.H., Chiu, Y.C., Wei, W.C., Wu, S.Y., Sun, X., Liu, R., Yu, S., Liu, R.S., Hsieh, C.C., Tang, K.T., Li, Q., Chang, M.F.: 24.5 A twin-8T SRAM computation-in-memory macro for multiple-bit CNN-based machine learning. In: Proceedings of IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, pp. 396–398 (2019)
4. Chen, Y., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE J. Solid-State Circuits. 52(1), 127–138 (2017)
5. Vahdat, S., Kamal, M., Afzali-Kusha, A., Pedram, M.: TOSAM: an energy-efficient truncation- and rounding-based scalable approximate multiplier. IEEE Trans. Very Large Scale Integr. VLSI Syst. 27(5), 1161–1173 (2019)