Tools and Technologies for Quantifying Spread and Impacts of Invasive Species

Author:

Reeves Matt,Ibáñez Inés,Blumenthal Dana,Chen Gang,Guo Qinfeng,Jarnevich Catherine,Koch Jennifer,Sapio Frank,Schwartz Michael K.,Meentemeyer Ross K.,Wylie Bruce K.,Boyte Stephen

Abstract

AbstractThe need for tools and technologies for understanding and quantifying invasive species has never been greater. Rates of infestation vary on the species or organism being examined across the United States, and notable examples can be found. For example, from 2001 to 2003 alone, ash (Fraxinus spp.) mortality progressed at a rate of 12.97 km year −1 (Siegert et al. 2014), and cheatgrass (Bromus tectorum) is expected to increase dominance on 14% of Great Basin rangelands (Boyte et al. 2016). The magnitude and scope of problems that invasive species present suggest novel approaches for detection and management are needed, especially those that enable more cost-effective solutions. The advantages of using technologically advanced approaches and tools are numerous, and the quality and quantity of available information can be significantly enhanced by their use. They can also play a key role in development of decision-support systems; they are meant to be integrated with other systems, such as inventory and monitoring, because often the tools are applied after a species of interest has been detected and a threat has been identified. In addition, the inventory systems mentioned in Chap. 10.1007/978-3-030-45367-1_10 are regularly used in calibrating and validating models and decision-support systems. For forested areas, Forest Inventory and Analysis (FIA) data are most commonly used (e.g., Václavík et al. 2015) given the long history of the program. In non-forested systems, national inventory datasets have not been around as long (see Chap. 10.1007/978-3-030-45367-1_10), but use of these data to calibrate and validate spatial models is growing. These inventory datasets include the National Resources Inventory (NRI) (e.g., Duniway et al. 2012) and the Assessment Inventory and Monitoring program (AIM) (e.g., McCord et al. 2017). Similarly, use of the Nonindigenous Aquatic Species (NAS) database is growing as well (e.g., Evangelista et al. 2017). The consistent protocols employed by these programs prove valuable for developing better tools, but the data they afford are generally limited for some tools because the sampling intensity is too low.

Funder

USDA Forest Service

Publisher

Springer International Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3