Author:
García Diego,Pérez Daniel,Papapetrou Panagiotis,Díaz Ignacio,Cuadrado Abel A.,Enguita José Maria,González Ana,Domínguez Manuel
Publisher
Springer Nature Switzerland
Reference31 articles.
1. Aboulian, A., et al.: NILM dashboard: a power system monitor for electromechanical equipment diagnostics. IEEE Trans. Ind. Inf. 15(3), 1405–1414 (2018)
2. Angelis, G.F., Timplalexis, C., Krinidis, S., Ioannidis, D., Tzovaras, D.: NILM applications: literature review of learning approaches, recent developments and challenges. Energy Build., 111951 (2022)
3. Barker, S., Kalra, S., Irwin, D., Shenoy, P.: NILM redux: the case for emphasizing applications over accuracy. In: NILM-2014 Workshop. Citeseer (2014)
4. Bonfigli, R., Felicetti, A., Principi, E., Fagiani, M., Squartini, S., Piazza, F.: Denoising autoencoders for non-intrusive load monitoring: improvements and comparative evaluation. Energy Build. 158, 1461–1474 (2018)
5. Chen, K., Zhang, Y., Wang, Q., Hu, J., Fan, H., He, J.: Scale-and context-aware convolutional non-intrusive load monitoring. IEEE Trans. Power Syst. 35(3), 2362–2373 (2019)