1. Bachem, O., Lucic, M., Hassani, H., Krause, A.: Fast and provably good seedings for k-means. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
2. Bachem, O., Lucic, M., Hassani, S.H., Krause, A.: Approximate k-means++ in sublinear time. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)
3. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable k-means+. In: Proceedings of the VLDB Endowment, vol. 5, no. 7 (2012)
4. Bottesch, T., Bühler, T., Kächele, M.: Speeding up k-means by approximating Euclidean distances via block vectors. In: International Conference on Machine Learning, pp. 2578–2586. PMLR (2016)
5. Chan, J.Y., Leung, A.P.: Efficient k-means++ with random projection. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 94–100. IEEE (2017)