Author:
Qu Zhe,Cui Lizhen,Xu Yonghui
Publisher
Springer Nature Switzerland
Reference20 articles.
1. Bai, T., Zhang, S., Egleston, B.L., Vucetic, S.: Interpretable representation learning for healthcare via capturing disease progression through time. In: ACM SIGKDD, pp. 43–51 (2018)
2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP, pp. 1724–1734 (2014)
3. Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J.: Gram: graph-based attention model for healthcare representation learning. In: ACM SIGKDD, pp. 787–795 (2017)
4. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: RETAIN: an interpretable predictive model for healthcare using reverse time attention mechanism. In: NIPS, pp. 3512–3520 (2016)
5. Darabi, S., Kachuee, M., Fazeli, S., Sarrafzadeh, M.: Taper: time-aware patient EHR representation. IEEE J. Biomed. Health 24(11), 3268–3275 (2020)