Machine Learning Models for Malicious Traffic Detection in IoT Networks /IoT-23 Dataset/

Author:

Oha Chibueze Victor,Farouk Fathima Shakoora,Patel Pujan Pankaj,Meka Prithvi,Nekkanti Sowmya,Nayini Bhageerath,Carvalho Smit Xavier,Desai Nisarg,Patel Manishkumar,Butakov Sergey

Publisher

Springer International Publishing

Reference20 articles.

1. CIRA: 2019 CIRA Cybersecurity Survey, CIRA (2019). https://www.cira.ca/resources/cybersecurity/report/2019-cira-cybersecurity-survey. Accessed 2 March 2021

2. Transforma Insights: Global IoT Market Will Grow to 24.1 Billion Devices in 2030, Generating $1.5 Trillion Annual Revenue, CISON PR Newswire (2020). https://www.prnewswire.com/news-releases/global-iot-market-will-grow-to-24-1-billion-devices-in-2030--generating-1-5-trillion-annual-revenue-301061873.html. Accessed 20 March 2021

3. Khraisat, A., Alazab, A.: A critical review of intrusion detection systems in the internet of things: techniques, deployment strategy, validation strategy, attacks, public datasets and challenges. Cybersecurity 4(18) (2021)

4. Beigi, E.B., Jazi, H.H., Stakhanova, N., Ghorbani, A.A.: Towards effective feature selection in machine learning-based botnet detection approaches. In: 2014 IEEE Conference on Communications and Network Security, San Francisco, CA, USA, pp. 247–255 (2014). https://doi.org/10.1109/CNS.2014.6997492

5. Jae-Gil, L., Jiawei, H., Xiaolei, L.: Trajectory outlier detection:a partition-and-detect framework. In: 2008 IEEE 24th International Conference on Data Engineering, Cancun, Mexico (2008)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding IoT-23 Dataset: A Benchmark for IoT Security Analysis;2023 4th International Conference on Intelligent Technologies (CONIT);2024-06-21

2. A Hybrid Feature Selection Approach based on Random Forest and Particle Swarm Optimization for IoT Network Traffic Analysis;International Journal of Electrical and Electronics Research;2023-06-30

3. BLoCNet: a hybrid, dataset-independent intrusion detection system using deep learning;International Journal of Information Security;2023-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3