1. Broda, B., Marcińczuk, M., Maziarz, M., Radziszewski, A., Wardyński, A.: KPWr: towards a free corpus of Polish. In: Calzolari, N., et al. (eds.) Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC 2012), Istanbul, Turkey, pp. 3218–3222. European Language Resources Association (ELRA) (2012). http://www.lrec-conf.org/proceedings/lrec2012/pdf/965_Paper.pdf
2. Cer, D., et al.: Universal sentence encoder for english. In: Blanco, E., Lu, W. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Brussels, Belgium, pp. 169–174. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/D18-2029
3. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);S Dadas,2020
4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/N19-1423. https://aclanthology.org/N19-1423
5. Dirkson, A., Verberne, S., Kraaij, W.: Breaking BERT: Understanding its Vulnerabilities for Named Entity Recognition through Adversarial Attack. CoRR abs/2109.11308 (2021). https://arxiv.org/abs/2109.11308