1. MICCAI Grand Challenge Tumor Proliferation Assessment Challenge (TUPAC16).
http://tupac.tue-image.nl/
. Accessed 18 Jan 2018
2. Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016)
3. Cardoso, M.J., et al. (eds.): Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis: 6th Joint International Workshops, CVII-STENT and Second International Workshop, LABELS (2017), held in Conjunction with MICCAI 2017 (2017)
4. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: International Conference on Artificial Intelligence and Statistics, vol. 9, pp. 249–256. PMLR, 13–15 May 2010
5. Kalesnykiene, V., Kamarainen, J.-K., Voutilainen, R., Pietil, J., Kälviäinen, H., Uusitalo, H.: Diaretdb1 diabetic retinopathy database and evaluation protocol