Author:
Feng Yingjie,Chen Wei,Gu Xianfeng,Xu Xiaoyin,Zhang Min
Publisher
Springer Nature Switzerland
Reference24 articles.
1. Adeli, E., et al.: Semi-supervised discriminative classification robust to sample-outliers and feature-noises. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 515–522 (2018)
2. Amini, A., Schwarting, W., Soleimany, A., Rus, D.: Deep evidential regression. Adv. Neural. Inf. Process. Syst. 33, 14927–14937 (2020)
3. Aviles-Rivero, A.I., Runkel, C., Papadakis, N., Kourtzi, Z., Schönlieb, C.B.: Multi-modal hypergraph diffusion network with dual prior for Alzheimer classification. In: MICCAI 2022, Part III. LNCS, pp. 717–727. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_69
4. Balaram, S., Nguyen, C.M., Kassim, A., Krishnaswamy, P.: Consistency-based semi-supervised evidential active learning for diagnostic radiograph classification. In: MICCAI 2022, Part I. LNCS, vol. 13431, pp. 675–685. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_64
5. Bengs, V., Hüllermeier, E., Waegeman, W.: Pitfalls of epistemic uncertainty quantification through loss minimisation. In: Advances in Neural Information Processing Systems (2022)