1. Abu Kwaik, K., Chatzikyriakidis, S., Dobnik, S., Saad, M., Johansson, R.: An arabic tweets sentiment analysis dataset (ATSAD) using distant supervision and self training. In: Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection, pp. 1–8. European Language Resource Association (05 2020)
2. Al-khurayji, R., Sameh, A.: An effective Arabic text classification approach based on kernel Naive Bayes classifier (2017). https://doi.org/10.5121/IJAIA.2017.8601
3. Alayba, A.M., Palade, V., England, M., Iqbal, R.: A combined CNN and LSTM model for Arabic sentiment analysis. arXiv:1807.02911 [cs] 11015, 179–191 (2018). https://doi.org/10.1007/978-3-319-99740-7_12
4. Baly, R., et al.: Comparative evaluation of sentiment analysis methods across arabic dialects. Procedia Comput. Sci. 117, 266–273 (2017). https://doi.org/10.1016/j.procs.2017.10.118
5. Baly, R., Khaddaj, A., Hajj, H., El-Hajj, W., Shaban, K.B.: ArSentD-LEV: a multi-topic corpus for target-based sentiment analysis in Arabic levantine tweets. arXiv:1906.01830 [cs, stat], 25 May 2019