Author:
Aparicio-Ruiz Pablo,Barbadilla-Martín Elena,Robles-Velasco Alicia,Ragel-Bonilla Juan Carlos
Publisher
Springer Nature Switzerland
Reference10 articles.
1. Barbadilla-Martín, E., et al.: Sensitivity analysis in the prediction of thermal comfort: a machine learning-based approach. In: 16th International Conference on Industrial Engineering and Industrial Management XXVI Congreso de Ingeniería de Organización (2022)
2. Chaudhuri, T., et al.: Random forest based thermal comfort prediction from gender-specific physiological parameters using wearable sensing technology. Energy Build. 166, 391–406 (2018)
3. de Dear, R., et al.: A review of adaptive thermal comfort research since 1998. Energy Build. 214, 109893 (2020). https://doi.org/10.1016/j.enbuild.2020.109893
4. Földváry Ličina, V., et al.: Development of the ASHRAE global thermal comfort Database II. Build. Environ. 142, 502–512 (2018). https://doi.org/10.1016/j.buildenv.2018.06.022
5. Indraganti, M., Rao, K.D.: Effect of age, gender, economic group and tenure on thermal comfort: a field study in residential buildings in hot and dry climate with seasonal variations. Energy Build. 42(3), 273–281 (2010). https://doi.org/10.1016/j.enbuild.2009.09.003