Publisher
Springer Nature Switzerland
Reference17 articles.
1. Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability methods. In: Proceedings of the 35th International Conference on Machine Learning (ICML 2018), pp. 10–15. Stockholm, Sweden (2018)
2. Carrillo, G.A.: A model for designing rule-based expert systems (2017)
3. Cummins, L., et al.: Explainable predictive maintenance: a survey of current methods, challenges and opportunities (2024)
4. El-Khawaga, G., Elzeki, O., Abuelkheir, M., Reichert, M.: Why should i trust your explanation? an evaluation approach for XAI methods applied to predictive process monitoring results. IEEE Trans. Artif. Intell. PP, 1–15 (2024). https://doi.org/10.1109/TAI.2024.3357041
5. Elkhawaga, G., Elzeki, O., Abuelkheir, M., Reichert, M.: Evaluating explainable artificial intelligence methods based on feature elimination: a functionality-grounded approach. Electronics 12(7), 1670 (2023). https://doi.org/10.3390/electronics12071670