1. Arrieta, A.B., et al.: Explainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible AI. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 4184–4191. IEEE (2020)
2. Barrera-Vicent, A., Paluzo-Hidalgo, E., Gutiérrez-Naranjo, M.A.: The metric-aware kernel-width choice for lime. In: Longo, L. (ed.) Joint Proceedings of the xAI-2023 Late-breaking Work, Demos and Doctoral Consortium co-located with the 1st World Conference on eXplainable Artificial Intelligence (xAI-2023), Lisbon, Portugal, 26–28 July 2023. CEUR Workshop Proceedings, vol. 3554, pp. 117–122. CEUR-WS.org (2023). https://ceur-ws.org/Vol-3554/paper21.pdf
3. Bhattacharyya, A.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Biometrika 34(3/4), 291–302 (1943)
4. Boissonnat, J.D., Chazal, F., Yvinec, M.: Geometric and Topological Inference. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2018)
5. Brundage, E.A.: Toward trustworthy AI development: mechanisms for supporting verifiable claims. arXiv preprint arXiv:2110.05282 (2021)