Challenges and Opportunities of Computational Social Science for Official Statistics

Author:

Signorelli Serena,Fontana Matteo,Gabrielli Lorenzo,Vespe Michele

Abstract

AbstractThe vast amount of data produced everyday (so-called digital traces) and available nowadays represent a gold mine for the social sciences, especially in a computational context, that allows to fully extract their informational and knowledge value. In the latest years, statistical offices have made efforts to profit from harnessing the potential offered by these new sources of data, with promising results. But how difficult is this integration process? What are the challenges that statistical offices would likely face to profit from new data sources and analytical methods? This chapter will start by setting the scene of the current official statistics system, with a focus on its fundamental principles and dimensions relevant to the use of non-traditional data. It will then present some experiments and proofs of concept in the context of data innovation for official statistics, followed by a discussion on prospective challenges related to sustainable data access, new technical and methodological approaches and effective use of new sources of data.

Funder

The European Union, represented by the European Commission

Publisher

Springer International Publishing

Reference43 articles.

1. AmCham EU. (2021). Data Act—Feedback to the European Commission’s Inception Impact Assessment. https://www.amchameu.eu/system/files/position_papers/iia_data_act.pdf

2. Baldacci, E., Ricciato, F., & Withmann, A. (2021). A reflection on the re(use) of new data sources for official statistics. Revista de Estadística y Sociedad, 83, 8–11.

3. Bertoni, E., Fontana, M., Gabrielli, L., Signorelli, S., & Vespe, M. (Eds). (2022). Mapping the demand side of computational social science for policy. EUR 31017 EN, Luxembourg, Publication Office of the European Union. ISBN 978-92-76-49358-7, https://doi.org/10.2760/901622

4. Biancotti, C., Borgogno, O., & Veronese, G. (2021, November 1). Principled data access: Building public-private data partnerships for better official statistics. https://blogs.worldbank.org/opendata/principled-data-access-building-public-private-data-partnerships-better-official

5. Big Data UN Global Working Group. (2019). UN handbook on privacy-preserving computation techniques. https://unstats.un.org/bigdata/task-teams/privacy/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3