Computational Social Science for the Public Good: Towards a Taxonomy of Governance and Policy Challenges

Author:

Verhulst Stefaan Gerard

Abstract

AbstractComputational Social Science (CSS) has grown exponentially as the process of datafication and computation has increased. This expansion, however, is yet to translate into effective actions to strengthen public good in the form of policy insights and interventions. This chapter presents 20 limiting factors in how data is accessed and analysed in the field of CSS. The challenges are grouped into the following six categories based on their area of direct impact: Data Ecosystem, Data Governance, Research Design, Computational Structures and Processes, the Scientific Ecosystem, and Societal Impact. Through this chapter, we seek to construct a taxonomy of CSS governance and policy challenges. By first identifying the problems, we can then move to effectively address them through research, funding, and governance agendas that drive stronger outcomes.

Funder

The European Union, represented by the European Commission

Publisher

Springer International Publishing

Reference91 articles.

1. Albert, A., Balázs, B., Butkevičienė, E., Mayer, K., & Perelló, J. (2021). Citizen social science: New and established approaches to participation in social research. In K. Vohland, A. Land-Zandstra, L. Ceccaroni, R. Lemmens, J. Perelló, M. Ponti, R. Samson, & K. Wagenknecht (Eds.), The science of citizen science (pp. 119–138). Springer International Publishing. https://doi.org/10.1007/978-3-030-58278-4_7

2. Baeza-Yates, R. (2016). Data and algorithmic bias in the web. Proceedings of the 8th ACM Conference on Web Science, 1, 1–1. https://doi.org/10.1145/2908131.2908135

3. Bahrke, J., & Manoury, C. (2022). Data act: Commission proposes measures for a fair and innovative data economy. European Commission - Press Corner. https://ec.europa.eu/commission/presscorner/detail/en/ip_22_1113

4. Balahur, A., Steinberger, R., Kabadjov, M., Zavarella, V., van der Goot, E., Halkia, M., Pouliquen, B., & Belyaeva, J. (2010). Sentiment analysis in the news. European Language Resources Agency (ELRA). http://www.lrec-conf.org/proceedings/lrec2010/index.html

5. Berens, J., Raymond, N., Shimshon, G., Verhulst, S., & Bernholz, L. (2016). The humanitarian data ecosystem: The case for collective responsibility. Stanford Center on Philanthropy and Civil Society. https://pacscenter.stanford.edu/wp-content/uploads/2017/11/humanitarian_data_ecosystem.pdf

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Citizen science for social physics: digital tools and participation;The European Physical Journal Plus;2024-07-02

2. Computational Social Science in Halal Fields;Solving Halal Industry Issues Through Research in Halal Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3