subMFL: Compatible subModel Generation for Federated Learning in Device Heterogeneous Environment

Author:

Oz ZeyneddinORCID,Soygul Oz CeylanORCID,Malekjafarian AbdollahORCID,Afraz NimaORCID,Golpayegani FatemehORCID

Abstract

AbstractFederated Learning (FL) is commonly used in systems with distributed and heterogeneous devices with access to varying amounts of data and diverse computing and storage capacities. FL training process enables such devices to update the weights of a shared model locally using their local data and then a trusted central server combines all of those models to generate a global model. In this way, a global model is generated while the data remains local to devices to preserve privacy. However, training large models such as Deep Neural Networks (DNNs) on resource-constrained devices can take a prohibitively long time and consume a large amount of energy. In the current process, the low-capacity devices are excluded from the training process, although they might have access to unseen data. To overcome this challenge, we propose a model compression approach that enables heterogeneous devices with varying computing capacities to participate in the FL process. In our approach, the server shares a dense model with all devices to train it: Afterwards, the trained model is gradually compressed to obtain submodels with varying levels of sparsity to be used as suitable initial global models for resource-constrained devices that were not capable of train the first dense model. This results in an increased participation rate of resource-constrained devices while the transferred weights from the previous round of training are preserved. Our validation experiments show that despite reaching about 50% global sparsity, generated submodels maintain their accuracy while can be shared to increase participation by around 50%.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3