A Formal Model to Prove Instantiation Termination for E-matching-Based Axiomatisations

Author:

Ge RuiORCID,Garcia RonaldORCID,Summers Alexander J.ORCID

Abstract

AbstractSMT-based program analysis and verification often involve reasoning about program features that have been specified using quantifiers; incorporating quantifiers into SMT-based reasoning is, however, known to be challenging. If quantifier instantiation is not carefully controlled, then runtime and outcomes can be brittle and hard to predict. In particular, uncontrolled quantifier instantiation can lead to unexpected incompleteness and even non-termination. E-matching is the most widely-used approach for controlling quantifier instantiation, but when axiomatisations are complex, even experts cannot tell whether or not their use of E-matching guarantees completeness or termination.This paper presents a new formal model that facilitates the proof, once and for all, that giving a complex E-matching-based axiomatisation to an SMT solver such as Z3 or cvc5, cannot cause non-termination. Key to our technique is an operational semantics for solver behaviour that models how the E-matching rules common to most solvers are used to determine when quantifier instantiations are enabled, but abstracts over irrelevant details of individual solvers. We demonstrate the effectiveness of our technique by presenting a termination proof for a set theory axiomatisation adapted from those used in the Dafny and Viper verifiers.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3