1. Amid, E., Warmuth, M.K., Anil, R., Koren, T.: Robust bi-tempered logistic loss based on Bregman divergences. In: NeurIPS (2019)
2. Arazo, E., Ortego, D., Albert, P., O’Connor, N., McGuinness, K.: Unsupervised label noise modeling and loss correction. In: ICML (2019)
3. Bai, Y., Liu, T.: ME-MOMENTUM: extracting hard confident examples from noisily labeled data. In: ICCV (2021)
4. Bai, Y., et al.: Understanding and improving early stopping for learning with noisy labels. In: NeurIPS (2021)
5. Cheng, H., Zhu, Z., Li, X., Gong, Y., Sun, X., Liu, Y.: Learning with instance-dependent label noise: a sample sieve approach. In: ICLR (2021)