Layered Modal Type Theory

Author:

Hu Jason Z. S.ORCID,Pientka BrigitteORCID

Abstract

AbstractWe introduce layering to modal type theory to combine type theory with intensional analysis. In particular, we demonstrate this idea by developing a 2-layered modal type theory. At the core of this type theory (layer 0) is a simply typed $$\lambda $$ λ -calculus with no modality. Layer 1 is obtained by extending the core language with one layer of contextual $$\square $$ types to support pattern matching on potentially open code from layer 0 while retaining normalization. Although both layers fundamentally share the same language and the same typing judgment, we only allow computation at layer 1. As a consequence, layer 0 accurately captures the syntactic representation of code in contrast to the computational behaviors at layer 1. The system is justified by normalization by evaluation (NbE) using a presheaf model. The normalization algorithm extracted from the model is sound and complete and is implemented in Agda.Layered modal type theory provides a uniform foundation for meta-programming with intensional analysis. We see this work as an important step towards a foundational way to support meta-programming in proof assistants.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3