1. Scelo, G., Larose, T.L.: Epidemiology and risk factors for kidney cancer. J. Clin. Oncol. 36(36), 3574 (2018)
2. Heller, N., et al. The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KITS19 challenge. Med. Image Anal. 67, 101821 (2021)
3. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)
4. Heller, N., et al.: The KITS19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. arXiv preprint arXiv:1904.00445 (2019)
5. Nikolov, S., et al.: Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. arXiv preprint arXiv:1809.04430 (2018)