1. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)
2. Cappelatti, E.: Post-correction of OCR errors using pyenchant spelling suggestions selected through a modified needleman-wunsch algorithm. In: International Conference on Human-Computer Interaction, pp. 3–10. Springer (2018)
3. Croft, W.B., Harding, S.M., Taghva, K., Borsack, J.: An evaluation of information retrieval accuracy with simulated OCR output. In: Symposium on Document Analysis and Information Retrieval, pp. 115–126 (1994)
4. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
5. Evert, S.: Google web 1t 5-grams made easy (but not for the computer). In: Proceedings of the NAACL HLT 2010 Sixth Web as Corpus Workshop, pp. 32–40. Association for Computational Linguistics (2010)