Uncertainty-Aware Compositional System-Level Reliability Analysis

Author:

Aliee Hananeh,Glaß Michael,Khosravi Faramarz,Teich Jürgen

Abstract

AbstractContinuous technology scaling has increased the susceptibility of today’s electronic devices to manufacturing tolerances and environmental changes. The resulting uncertainty in component reliability can be only approximated or estimated at design time and might propagate to system level. Therefore, uncertainty must be considered to enable the design of robust systems. In this chapter, we propose a methodology for cross-level reliability analysis to tame the ever increasing analysis complexity of contemporary systems under the influence of uncertainties. The presented methodology combines various reliability analysis techniques across different levels of abstraction while providing an explicit modeling of uncertainties. It introduces mechanisms for (a) the composition and decomposition of the system during analysis and (b) converting analysis data between different levels of abstraction through adapters. The developed analysis techniques are integrated in an automatic electronic system-level reliability analysis tool to allow for the evaluation of reliability-increasing techniques and for DSE!. The tool thereby uses meta-heuristic algorithms for optimization and enables the comparison of system implementation candidates with objectives represented by uncertainty distributions.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3